skip to main content


Search for: All records

Creators/Authors contains: "Wei, Donglai"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2025
  2. Abstract Following significant advances in image acquisition, synapse detection, and neuronal segmentation in connectomics, researchers have extracted an increasingly diverse set of wiring diagrams from brain tissue. Neuroscientists frequently represent these wiring diagrams as graphs with nodes corresponding to a single neuron and edges indicating synaptic connectivity. The edges can contain “colors” or “labels”, indicating excitatory versus inhibitory connections, among other things. By representing the wiring diagram as a graph, we can begin to identify motifs, the frequently occurring subgraphs that correspond to specific biological functions. Most analyses on these wiring diagrams have focused on hypothesized motifs—those we expect to find. However, one of the goals of connectomics is to identify biologically-significant motifs that we did not previously hypothesize. To identify these structures, we need large-scale subgraph enumeration to find the frequencies of all unique motifs. Exact subgraph enumeration is a computationally expensive task, particularly in the edge-dense wiring diagrams. Furthermore, most existing methods do not differentiate between types of edges which can significantly affect the function of a motif. We propose a parallel, general-purpose subgraph enumeration strategy to count motifs in the connectome. Next, we introduce a divide-and-conquer community-based subgraph enumeration strategy that allows for enumeration per brain region. Lastly, we allow for differentiation of edges by types to better reflect the underlying biological properties of the graph. We demonstrate our results on eleven connectomes and publish for future analyses extensive overviews for the 26 trillion subgraphs enumerated that required approximately 9.25 years of computation time. 
    more » « less
  3. 3D instance segmentation for unlabeled imaging modalities is a challenging but essential task as collecting expert annotation can be expensive and time-consuming. Existing works segment a new modality by either deploying pre-trained models optimized on diverse training data or sequentially conducting image translation and segmentation with two relatively independent networks. In this work, we propose a novel Cyclic Segmentation Generative Adversarial Network (CySGAN) that conducts image translation and instance segmentation simultaneously using a unified network with weight sharing. Since the image translation layer can be removed at inference time, our proposed model does not introduce additional computational cost upon a standard segmentation model. For optimizing CySGAN, besides the CycleGAN losses for image translation and supervised losses for the annotated source domain, we also utilize self-supervised and segmentation-based adversarial objectives to enhance the model performance by leveraging unlabeled target domain images. We benchmark our approach on the task of 3D neuronal nuclei segmentation with annotated electron microscopy (EM) images and unlabeled expansion microscopy (ExM) data. The proposed CySGAN outperforms pre-trained generalist models, feature-level domain adaptation models, and the baselines that conduct image translation and segmentation sequentially. Our implementation and the newly collected, densely annotated ExM zebrafish brain nuclei dataset, named NucExM, are publicly available at https://connectomics-bazaar.github.io/proj/CySGAN/index.html. 
    more » « less
  4. Three-dimensional (3D) reconstruction of living brain tissue down to an individual synapse level would create opportunities for decoding the dynamics and structure–function relationships of the brain’s complex and dense information processing network; however, this has been hindered by insufficient 3D resolution, inadequate signal-to-noise ratio and prohibitive light burden in optical imaging, whereas electron microscopy is inherently static. Here we solved these challenges by developing an integrated optical/machine-learning technology, LIONESS (live information-optimized nanoscopy enabling saturated segmentation). This leverages optical modifications to stimulated emission depletion microscopy in comprehensively, extracellularly labeled tissue and previous information on sample structure via machine learning to simultaneously achieve isotropic super-resolution, high signal-to-noise ratio and compatibility with living tissue. This allows dense deep-learning-based instance segmentation and 3D reconstruction at a synapse level, incorporating molecular, activity and morphodynamic information. LIONESS opens up avenues for studying the dynamic functional (nano-)architecture of living brain tissue. 
    more » « less
  5. We present a recurrent network for 3D reconstruction of neurons that sequentially generates binary masks for every object in an image with spatio-temporal consistency. Our network models consistency in two parts: (i) local, which allows exploring non-occluding and temporally-adjacent object relationships with bi-directional recurrence. (ii) non-local, which allows exploring long-range object relationships in the temporal domain with skip connections. Our proposed network is end-to-end trainable from an input image to a sequence of object masks, and, compared to methods relying on object boundaries, its output does not require post-processing. We evaluate our method on three benchmarks for neuron segmentation and achieved state-of-the-art performance on the SNEMI3D challenge. 
    more » « less
  6. Reconstructed terabyte and petabyte electron microscopy image volumes contain fully-segmented neurons at resolutions fine enough to identify every synaptic connection. After manual or automatic reconstruction, neuroscientists want to extract wiring diagrams and connectivity information to analyze the data at a higher level. Despite significant advances in image acquisition, neuron segmentation, and synapse detection techniques, the extracted wiring diagrams are still quite coarse, and often do not take into account the wealth of information in the densely reconstructed volumes. We propose a synapse-aware skeleton generation strategy to transform the reconstructed volumes into an information-rich yet abstract format on which neuroscientists can perform biological analysis and run simulations. Our method extends existing topological thinning strategies and guarantees a one-to-one correspondence between skeleton endpoints and synapses while simultaneously generating vital geometric statistics on the neuronal processes. We demonstrate our results on three large-scale connectomic datasets and compare against current state-of-the-art skeletonization algorithms. 
    more » « less
  7. Most current state-of-the-art connectome reconstruction pipelines have two major steps: initial pixel-based segmentation with affinity prediction and watershed transform, and refined segmentation by merging over-segmented regions. These methods rely only on local context and are typically agnostic to the underlying biology. Since a few merge errors can lead to several incorrectly merged neuronal processes, these algorithms are currently tuned towards over-segmentation producing an overburden of costly proofreading. We propose a third step for connectomics reconstruction pipelines to refine an over-segmentation using both local and global context with an emphasis on adhering to the underlying biology. We first extract a graph from an input segmentation where nodes correspond to segment labels and edges indicate potential split errors in the over-segmentation. In order to increase throughput and allow for large-scale reconstruction, we employ biologically inspired geometric constraints based on neuron morphology to reduce the number of nodes and edges. Next, two neural networks learn these neuronal shapes to further aid the graph construction process. Lastly, we reformulate the region merging problem as a graph partitioning one to leverage global context. We demonstrate the performance of our approach on four real-world connectomics datasets with an average variation of information improvement of 21.3%. 
    more » « less